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During the last 13 years, malaria epidemics in western 
Kenya have spread from 3 to 15 districts, often taking 
the population by surprise. The epidemics are associa-
ted with high morbidity and mortality in all age groups, 
with prevalence of the disease rising from about 20% 
to about 60%. The case mortality in functional health 
facilities has been estimated as about 7.5%. The govern-
ment’s policy on malaria control is based on quick 
diagnosis and effective treatment; however, availability 
of sufficient manpower, drugs, other resources, and 
prompt interventions to prevent a potential epidemic 
are assumed. Quite often, the number of people infected 
is so high that the demand for drugs outstrips supplies, 
complicating management of the epidemic. Predicting 
when and where epidemics will occur is a major problem.

Climatic conditions in the highlands, such as tempe-
rature and rainfall, affect the development of mosquitoes 
and malaria parasites. Increasing temperature accelera-
tes the rate of mosquito larval development, the fre-
quency of blood feeding by adult females on humans, 
and reduces the time it takes the malaria parasites to 
mature in female mosquitoes. Increased rainfall crea-
tes additional breeding sites for mosquitoes, thus incre-
asing their numbers. In generating a predictive model 
temperature and rainfall were taken as risk factors for 

malaria transmission. Temperature was transformed 
into a discrete exponential value and rainfall, into a 
discrete linear value. A fractional risk was then calcula-
ted from these values. Maximum transmission risk was 
demonstrated to have occurred four months before the 
peak of the malaria epidemics. The model’s only data 
inputs are mean monthly rainfall and monthly maximum 
temperature.

Decision makers can use this tool to determine in 
which areas malaria epidemics are likely to occur and 
the severity of the epidemic, reducing uncertainties 
in decision-making and leading to better resource and 
disease management. 

Predicting malaria epidemics
Epidemic malaria in the Kenya highlands is caused by 
Plasmodium falciparum species and transmitted by Anop-
heles gambiae s.s. and Anopheles funestus mosquitoes. 
Epidemics, in western Kenya, generally occur in areas 
at altitudes of between 1500-2200 meters above sea 
level, where the annual mean daily temperature varies 
between 18-22°C. Topographically, these areas consist 
of river valleys, hills, and plateaus. The valleys are well 
drained, unlike the plateaus which are not, and can pro-
vide permanent mosquito breeding sites. The epidemics 
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normally occur from May to August, following the long 
rains. However, during the 1997/98 El Niño, the epide-
mic occurred from January through March 1998, follo-
wing unusually heavy rains (from October to Decem-
ber, 1997) caused by the El Niño weather.

El Niño Southern Oscillation (ENSO) 
and disease outbreaks
The ENSO phenomenon, which originates from anoma-
lous sea surface temperatures in the Eastern Tropical 
Pacific Ocean, tends to cause excess rainfall in some 
parts of the tropics and droughts in others. A number 
of disease outbreaks such as malaria, dengue and cholera 
have been associated with ENSO in endemic regions[1]. 
In Venezuela, malaria mortality and morbidity have been 
reported to increase by 36.5% in the years following 
recognized El Niño events[2] . In the Northeast region 
of the Punjab, malaria epidemics increased five-fold in 
the year following the El Niño and in Sri Lanka the 
risk of malaria epidemics increases four-fold during an El 
Niño year. In the Punjab, epidemics are associated with 
above normal precipitation while in Sri Lanka with below 
normal precipitation[3]. Recently, a number of research 
groups have pioneered the use of models to predict 
individual El Niño events and their effects on weather 
patterns throughout the world. Such models can be 
useful in predicting the probability of disease outbreaks 
in endemic areas, providing improved opportunities for 
taking preventative measures.

Although climate factors can increase malaria trans-
mission, the outcome of the clinical disease depends on 
the level of immunity of the infected person, how early 

the disease is treated, and the effectiveness of the anti-
malarial drugs.

Currently, in western Kenya, 15 districts, compared 
to 3 in 1988, are under constant threat of the epide-
mics[4]. Although there is greater frequency of epidemics 
in some districts, such as Kisii and Nandi, predicting 
when and where the outbreaks will occur, has, so far, 
been a matter of guesswork.

A climate-based model of transmission intensity for 
estimating the proportion of Kenya’s population expo-
sed to different epidemiological conditions has been 
developed[5]. However, this model only provides infor-
mation on the estimated annual morbidity and morta-
lity burden of malaria among Kenyan children. It has 
been shown, using remotely sensed data, that the nor-
malized difference vegetation index (NDVI) has the 
potential for predicting malaria transmission in Kenya[6]. 
In another model, key malaria transmission factors such 
as vector biting and entomological inoculation rates can 
be estimated using soil moisture in western Kenya[7]. 
None of these models has been used to predict mala-
ria outbreaks in the highlands. However, it has been 
demonstrated that in Kenya, a combination of satellite 
derived data, such as NDVI, and sea surface tempera-
ture anomalies in the Pacific and the Indian Oceans can 
be used to forecast the Rift Valley Fever outbreaks up 
to five months in advance[8].

Currently, there is no clear definition of a malaria 
epidemic, posing serious operational implications for 
disease control. Epidemics usually require emergency 
measures that must be implemented as promptly as 
possible in order to be effective. However, a declara-

Figure 1  Out-patient Department malaria cases in Kisii District Hospital, 1996-1999, Western Kenya. 
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a = 
HBI

 Eq. 2
 b

HBI = Human blood Index
b = interval between blood means in days

tion of an emergency, generally based on the inability 
of normal medical services to cope with demands fol-
lowing outbreaks, such as an epidemic, must be made.

The development of parasites in the mosquitoes, 
which is part of the malaria transmission cycle, is very sen-
sitive to external temperatures. The rate of larval deve-
lopment (and subsequent increase in the size of mosquito 
populations) is also dependent upon water tempera-
tures and the quantity and quality of breeding sites.

Expressing malaria transmission in mathematical 
terms: the vectorial capacity
The transmission of malaria has been described in 
mathematical terms as the vectorial capacity, the 
number of new mosquito infections daily that arise 
from one infected individual in a non-immune popula-
tion if all the biting mosquitoes become infected[9,10,11].

All of the above transmission parameters are affected 
by temperature. For example, as the temperature 
increases, the female mosquito feeds on blood more 
frequently, reducing b and increasing a (Eq. 2). More-
over, the interval between blood meals has exponential 
effects on the parasite’s survival rate (Eq. 3) and on Eq 

C = 
Ma2pn

 Eq. 1
 -logep

C = vectorial capacity
Ma = composite index of the daily mosquito
   man-biting rate
a = daily mosquito man biting habit, 
   how often the mosquito feeds on man 
   in a day (24 hours)
p = probability of the vector surviving 

  through 1 day (24 hours)
n = parasite’s extrinsic incubation period – 

  the duration it takes the parasite to 
  develop, mature and become infectious 
  in the mosquito

1, so that C, the vectorial capacity (Eq. 1) is sensitive to 
the changes in the vector’s blood feeding frequency[12]. 

The probability of the vector surviving one day 
(24 hours) p:

p = P 1/b Eq. 3

P equals the proportion of females that have laid 
eggs or the parity rate and a function of the daily 
survival probability of p. Changes in the proba-
bility of survival, p, has a large effect on C as p 
is raised to the power n in the numerator and as a 
log in the denominator in Eq. 1. 

Although the vectorial capacity equation is a powerful 
tool for simulating malaria transmission, it is very diffi-
cult to obtain the required parameters with the neces-
sary degree of precision. For this reason, a simpler cli-
mate based method was required to simulate and fore-
cast malaria transmission using easily obtainable data. In 
order to develop such a method, the behavior of mala-
ria transmission was first studied, using published data as 
inputs for the vectorial capacity equation.

Computer simulations of the effects of temperature 
on the extrinsic incubation period and the vecto-
rial capacity for An. gambiae
All simulations were performed using the spreadsheet 
program, Quattro Pro 8. Perhaps the most important 
effect of temperature on malaria transmission in the 
highlands is the change in the extrinsic incubation period 

The parasite’s extrinsic incubation period, n, is a 
function of temperature:

n =   
T

 Eq. 4
 t – tmin

where T is the constant (thermal sum), 111, for 
P. falciparum, t is the actual mean temperature 
and tmin 16.5-18°C (temperature in degrees cen-
tigrade) during the incubation period, n. 
Because n has an exponential effect on C, small 
changes in temperature will have a great effect 
on malaria transmission.
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n, of Plasmodium falciparum in the vectors. The extrinsic 
incubation period is the duration of time it takes the 
parasite to develop into a mature and infective stage.

Equation 4 was used to calculate and simulate the 
effects of temperature on the extrinsic incubation 
period. The annual mean temperatures at the altitude 
of 2000 m in western Kenya (18°C) is very close to 
the minimum temperature (16°C) required for trans-
mission of P. falciparum malaria.

Data on parity rates (P) and man-biting rates (Ma) 
were estimated from our internal data for the local 
highland sites in western Kenya where mean tempera-
tures range from 17-25°C. (Centre for Vector Biology 
and Control Research unpublished data). It was assu-
med that the parous rate within this temperature range 

was constant. The temperature dependent durations of 
the gonotrophic period (time, in days, between blood 
meals) were calculated for each temperature[12]. From 
these parameters the vectorial capacity at each tempe-
rature was calculated and graphed. 

Development of a temperature and rainfall based 
malaria epidemic prediction model
Long-term temperature data in the East African region 
covering the western Kenya highlands were obtained 
from the International Research Institute for Climate 
Prediction (IRI) website data bases, 
NOAA NCEP-NCAR: NCEP/NCAR Reanalysis Project, 

http://ingrid.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP-NCAR/. 

Maximum and minimum temperature data from January 
1970 - June 2000 for the grid 33.75E-39E, 2.8N-2.8S was 
down-loaded and plotted to show long-term trends in ano-
malies and to detect association, if any, between the trends 
in monthly mean maximum and minimum temperatures 
and recent malaria epidemics in the East African highlands.

The relationship between rainfall and man biting 
rates is complex and not yet understood. To study the 
effects of increased rainfall, we chose a simple, feasible 
scenario where, due to the creation of extra breeding 
sites (and therefore, an increase in the number of biting 
adult mosquitoes), the value of man-biting rates were 
doubled by rainfall.

Modeling malaria transmission and construction 

of an epidemic forecasting model

Field and hospital malaria data were collected in 
Kakamega district at an altitude of about 1500 m above 

Table 1  Effect of temperature on duration of development and maturation of Plasmodium falciparum parasites.

scenario1 mean Ma2 HBI3 biting daily Parity (P) extrinsic  daily  -ln p4 density X 1 density x2

  monthly    cycle feeding   incubation survival   (Ma2 px) (Ma2 px)

  temp ºC    rate (a)   period (x) rate (p)      -ln p     -ln p

1 17  4 0.95 4 0.24 0.75 111.0 0.93 0.07 0.00 0.01

2 19  6 0.95 3.20 0.30 0.75 37.0 0.91 0.09 0.71 1.42

3 21  8 0.95 2.67 0.36 0.75 22.2 0.90 0.11 2.41 4.82

4 23 10 0.95 2.29 0.42 0.75 15.9 0.88 0.13 4.49 8.98

5 25 12 0.95 2.00 0.48 0.75 12.3 0.87 0.14 6.72 13.45

1 Each scenario consists of a specific temperature, man-biting rate, and daily blood feeding rate

2 Ma = daily man biting rate measured by counting the number of female mosquitoes biting man throughout the night.

3 HBI = The proportion of female mosquitoes of a specific species that take their blood meals on man

4 -nl p = the negative natural log of the daily survival rate

Figure 2  Effects of temperature and doubling vector density on vec-

torial capacity.
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sea level. Entomological data were obtained between 
February 1998 and February 1999, in 9 sentinel houses. 
Parasitological data were collected in two schools in the 
same area (data not included in this analysis). Data on 
the proportion of in-patient malaria cases out of all in-
patient admissions were obtained from Mukumu Mis-
sion Hospital in Kakamega for the period 1997-1999. 
The total number of hospital admissions is used as the 
denominator in the determination of changes in seaso-
nal trends in malaria admissions. The hospital has a good 
diagnostic laboratory and computerized records. The 
annual mean proportion of malaria cases out of the total 
in-patient cases was calculated and used to determine 
the monthly anomaly (incidence) of malaria cases. 

In order to determine whether there had been any 
departures in monthly mean maximum and minimum 
temperatures and in the monthly proportion of mala-
ria cases, monthly values of these parameters obtained 
during the study period were compared to long-term 
mean values. The difference between long term values 
and current values has been referred as anomalies and 
can have positive or negative values. 

Rainfall and temperature data were officially obtained 
from the Kenya Meteorological Department for the 
Kakamega Meteorological Station. Anomalies in mean 
monthly maximum and minimum temperatures and 

rainfall were calculated for the Kakamega station from a 
25-year climatology (1975-2000). We had shown in ear-
lier work[13] that An. gambiae in western Kenya required 
a mean of 150 mm rainfall per month for the popula-
tion to increase significantly. This value was taken as 
the threshold value required for significant change in 
malaria transmission.

It has been shown that temperature has an expo-
nential effect on parasite development in the female 
mosquito; therefore, small increases in ambient tem-
perature of the mosquito habitat have large effects on 
the acceleration of parasite development. The effect of 
temperature is greatest on transmission at lower tem-
perature (17-21°C); thereafter, the rate of reduction 
on the period of the development and maturity of the 
parasites is low[14]. 

Our laboratory experiments, where temperature and 
humidity were equivalent to those of local village houses, 
indicated that the average lifespan of the female An. 
gambiae mosquito is 18 days (Hidde et al unpublished 
report). Therefore, the malaria parasites would have to 
mature in the majority of the mosquitoes before 18 days 
in order to be transmitted. However, 20% of the labora-
tory bred mosquitoes survived for 25 days. This means 
that transmission for the majority of the mosquitoes, 
which survive for only 18 days, can only take place at 

Figure 3  Mean monthly maximum temperature anomalies for the grid 33.7-38.5E and 2.9S-2.9N covering western Kenya and Uganda.
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an ambient mean temperature of 23°C when it takes 
the parasites 16 days to mature. At 27°C, the parasites 
require only 10 days to become infectious. In western 
Kenya, nighttime temperatures inside village houses, 
where mosquitoes spend most of the time resting, 
are generally two to three degrees warmer than out-
door ambient temperatures (Sander personal communi-
cation). The assumption was made based on our unpu-
blished data, that the An. gambiae blood-feeding habit and 
host choice is not a function of temperature. Parity was 
assumed to be constant at all temperatures.

Figure 2 shows that below a mean daily temperature 
of 18°C, very little transmission of malaria can occur, 
even if the number of vectors is doubled. However, 
at 21°C, each infected person can generate 2.41 new 
infections in mosquitoes and, if the mosquito density 
is doubled, the number of new mosquito infections is 
4.82. Assuming that rainfall increases the number of 
breeding sites (and the number of malaria vectors), 
then rainfall has a linear effect on vectorial capacity.

Evidence of recent changes in temperature anoma-
lies in parts of Western Kenya and Uganda
Anomalies of ≥ 3°C in western Kenya at altitudes of 
1500-2000 meters have the potential to precipitate 
increased malaria transmission provided there is suf-

ficient rainfall. This was confirmed by the data from 
Kakamega (Fig 5). From 1970-80, these conditions 
occurred only once, and from 1981-90 twice. From 
1991 to 2000, there were six such events, with the 
highest anomaly recorded in 1998. These events are 
consistent with the past malaria outbreaks.

Minimum temperatures are less variable than the 
maximum temperature (see in Figures 3 and 4). Bet-
ween 1970 and 1980, there was only one event with 
anomalies > 1°C, 1981-1990, three, and 1991-2000, 
four. The greatest positive anomaly, about 3°C, was 
recorded in 1998 during the El Niño.

Occurrence of positive anomalies in the maximum 
temperatures followed by rainfall may support a large 
malaria epidemic.

Determining the relationship between hospitalized malaria 

cases and maximum temperature anomalies in western Kenya

Trends in the maximum and minimum temperature 
anomalies suggest that the mean of the two temperatu-
res is not a suitable indicator of temperature effects on 
malaria transmission. The data indicate that when the 
maximum temperatures are rising and minimum tem-
peratures are falling, resulting mean temperature values 
conceal the epidemic related signal seen in the maxi-
mum temperatures. It should be noted that during the 

Figure 4  Mean monthly minimum temperature anomalies for the grid 33.7-38.5E and 2.9S-2.9N covering western Kenya and Uganda.
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1997/8 El Niño event, there were more than the usual 
proportion of malaria cases hospitalized at Mukumu 
hospital because the neighboring hospital was not fully 
operational due to striking medical staff.

Epidemic prediction model
The above information suggested that anomalies in the 
mean monthly maximum temperatures were a signifi-
cant risk factor for malaria outbreaks. Furthermore, we 
had earlier observed that a minimum of monthly mean 
rainfall of 150 mm was required for a significant incre-
ase in the population of An. gambiae, the major vector 
of malaria. Consequently the two meteorological para-
meters, i.e. maximum temperature anomalies and rain-
fall were used as key risk factors for malaria outbreaks. 
Figure 2 displays the exponential effect of temperature 
on malaria transmission. Rainfall has a linear effect. To 
construct the model, the additive value of the two risk 
factors was expressed as a fraction of a predetermined 
maximum value. To simplify the calculation and remove 
“noise” from the signal, the temperature and rainfall 
data were transformed from continuous variables into 
discrete values. Transformed temperature values were 
squared to create an exponential effect. The mathe-
matical expression representing the epidemic risk is 
shown in Equation 5.

Negative index values are assigned to rainfall above 300 
mm per month as such rainfall causes flashing of larvae 
and consequent reduction in the rate of transmission.
ER above 50%, as seen in figure 7, indicates a high risk 
for an epidemic.

Examples of data transformation
Temperature data filters
Programmable stepwise logic statements (filters) have 
been used to demonstrate the transformation. These 
statements can be constructed into a single logic for-
mula to perform automatic calculations in a spread-
sheet program. 

Figure 5  Maximum and minimum temperature anomalies in Kakamega and the proportion of malaria cases in Mukumu Hospital, 1997-1998.
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Calculation of anomalies in monthly mean maxi-
mum temperatures 
The mean maximum temperatures for each month are 
calculated for a period of 25 to 30 years.

These values are described as the climatology of the 
area. The mean maximum temperature of the month 
of interest is then subtracted from the long-term mean 
and this is the maximum temperature anomaly. 
T = temperature anomaly
T 

z = transformed data (discrete values)
T2 = exponential temperature 
If T ≥  0,  then T 

z = 0 T2 = 0
If 0 < T < 1, then T 

z = 1  T2 = 1
If 1 ≥  T < 2, then T 

z = 2  T2 = 4
If 2 ≥  T < 3, then T 

z = 3  T2 = 9
If 3 ≥  T < 4, then T 

z = 4  T2 = 16
If 4 ≥  T < 5, then T 

z = 5  T2 = 25

Rainfall data filter
R = Mean monthly rainfall,  
RZ = transformed data.
If R < 150, then R Z = 0
If 150 ≥ R <175, then RZ = 1
If 175  ≥ R <200, then RZ = 2
If 200 ≥ R <225, then RZ = 3
If 225 ≥ R <250, then RZ = 4
If 250 ≥ R <275, then RZ = 5
If 275 ≥ R <300, then RZ = 6
If R >300, then RZ = -6

The maximum risk value for maximum temperature ano-
maly was taken as 5.5°C and for rainfall 320 mm per month.

The epidemic risk (ER) index was calculated, for the 
study site, (using Eq. 5) using data obtained from the 
Kakamega meteorological station (1997-99). A corre-
lation, with lag effects, of the monthly ER was calcula-
ted for monthly incidence of malaria cases, using the 
Mukumu Hospital data. The highest correlation (r2 = 
0.26) was obtained with a lag of 4 months. This analysis 
indicated that there is a significant correlation between 
the ER and the incidence of malaria cases. 

The ER was plotted against the malaria case ano-
malies and as shown in Fig 7. In all cases, the peak of 
the ER appeared four months before the peak of the 
malaria cases. The model was able to predict both El 
Niño and non-El Niño malaria outbreaks. There were 
no false predictions, suggesting that the model has both 
high specificity and sensitivity.

For operational purposes, we have defined an epide-
mic as incidence of inpatient malaria cases 15% above 
the annual mean value. The mean value used was 
obtained for the period January 1996 to December 
1999, a period that included epidemic and non-epide-
mic years. The threshold-risk for decision-making is an 
ER value of 50 % which occurs 3-4 months before the 
epidemic reaches the peak.

The regression equation in Fig.6 showing the rela-
tionship between the monthly malaria case incidence 
(MCI) and the monthly percent epidemic risk (PER) (y 

Figure 6  Correlation between epidemic risk and the incidence of inpatient malaria cases in Mukumu Hospital.

The dots indicate the observed malaria incidence and the line represents the predicted incidence.
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= -6.7+0.36X, where y is the MCI and X is PER) can 
be used to estimate the size on the malaria epidemic. In 
this equation, X is equal to ER in equation 5. Further-
more the regression equation can be used to estimate 
specific outcomes of malaria case incidence with given 
temperature anomalies and amounts of rain by substi-
tuting the right side of equation 5 for X.

Application and further development of the model
The malaria epidemic prediction model meets the cri-
teria of a simple malaria epidemic prediction model 
needing no special equipment or skills and so can be 
used by existing health personnel using readily avai-
lable temperature and rainfall data of the meteoro-
logical department stations throughout the country. 
With centralization of data analysis and automation we 
envision that decision makers will receive warnings of 
impending epidemics within a few days following gene-
ration of data.

Although this system was developed using data col-
lected at 1500 m, we believe that it can be adapted so as 
to predict epidemics in malaria endemic areas at higher 
altitudes; if the mean annual temperature is ≥ 18°C, 
anomalies of ≥ 3°C would be expected to precipitate 
malaria outbreaks as long as the mean monthly rainfall 
is greater than 150 mm. Further, the size of the forecas-
ted epidemic can be estimated on the strength of the 
ER signal. 

 In the future, the lead-time between the predction 
and the epidemic may be increased using sea surface tem-

perature anomalies (SSTA) of the Indian and the Pacific 
Oceans. However, the SSTA data may not be readily avai-
lable at the district level and it may not be site specific. 

Most vector borne diseases are sensitive to climate 
change and variability. Some, such as malaria and dengue, 
are more sensitive than others, such as trypanosomia-
sis or schistosomiasis. However, we speculate that our 
model may be adaptable for prediction of other diseases. 

Temperature trends and malaria epidemics
Our data indicate that the use of the mean monthly tem-
peratures may be insensitive for the detection of ano-
malies that are associated with malaria epidemics. This 
could lead to a failure in identifying an association bet-
ween temperature change and malaria transmission.

Historically, malaria epidemics in Kenya occurred 
in the mid 1930s to 1940s and then again, from 1988 
to the present. During these periods, increases in 
the mean temperatures were observed in the African 
region [15] and, they could be translated into significant 
positive anomalies in the maximum, and perhaps, even 
in minimum temperatures. In the 1930’s to1940’s, the 
problem of drug resistance or deforestation in western 
Kenya may not have been significant so the epidemics 
could possibly be explained by changes in the climate. 
It is notable that the areas affected by the epidemics at 
that time were largely occupied by pastrolists and there 
was little land-use change. Whereas, there was only 
one extreme event between 1970-1980, there were six 
such events between 1990 and 2000. Moreover, the 

Figure 7  Malaria epidemic risk; percent of malaria cases above the annual mean inpatient malaria cases in Mukumu Hospital
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magnitude of the extreme events is increasing, a wor-
risome trend that can only intensify the frequency of 
malaria epidemics.
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